6 research outputs found

    All-Silicon On-Chip Optical Nanoantennas as Efficient Interfaces for Plasmonic Devices

    Full text link
    [EN] Plasmonic technology promises to unfold new advanced on-chip functionalities with direct applications in photovoltaics, light¿matter interaction, and the miniaturization of optical interconnects at the nanoscale. In this scenario, it is crucial to efficiently drive light to/from plasmonic devices. However, typically used plasmonic wires introduce prohibitive losses, hampering their use for many applications. Recently, plasmonic nanoantennas have been proposed to overcome this drawback, not only providing a notable loss reduction, but also an enhanced on-chip flexibility and reconfigurability. Nevertheless, these devices still perform poorly for long-reach interconnects, owing to their low-directive radiation and low efficiency. Here, we introduce a class of slot-waveguide-based silicon nanoantennas that lift all these limitations and show their feasibility to be connected directly and efficiently to plasmonic devices. To test the performance of these antennae, an on-chip plasmonic-dielectric interconnect is experimentally demonstrated over distances as high as 100 ¿m. In an outstanding manner, our wireless scheme clearly outperforms previous plasmonic approaches in terms of link efficiency and effective gain. This work paves the way for the development of ultrafast on-chip wireless reconfigurable and flexible interconnects and, additionally, opens new avenues in optical manipulation and sensing applications.This work was supported by Project TEC2015-73581-JIN PHUTURE (AEI/FEDER, UE) and Generalitat Valenciana s PROMETEO Grant NANOMET PLUS (PROMETEO II/2014/34).Lechago-Buendia, S.; García Meca, C.; Griol Barres, A.; Kovylina, M.; Bellieres, LC.; Martí Sendra, J. (2019). All-Silicon On-Chip Optical Nanoantennas as Efficient Interfaces for Plasmonic Devices. ACS Photonics. 6(5):1094-1099. https://doi.org/10.1021/acsphotonics.8b01596S109410996

    Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor

    Full text link
    [EN] Thrombin generation is a complex and finely regulated pathway that provokes dynamical changes of thrombin concentration in blood when a vascular injury occurs. In order to characterize the initiation phase of such process, when thrombin concentration is in the nM range, a label-free optical aptasensor is proposed here. This aptasensor combines a 1D photonic crystal structure consisting of a silicon corrugated waveguide with thrombin binding aptamers on its surface as bioreceptors. As a result, this aptasensor has been demonstrated to specifically detect thrombin concentrations ranging from 270 pM to 27 nM with an estimated detection limit of 33.5 pM and a response time of ~2 min. Furthermore, it has also been demonstrated that this aptasensor is able to continuously respond to consecutive increasing concentrations of thrombin and to detect binding events as they occur. All these features make this aptasensor a good candidate to continuously study how thrombin concentration progressively increases during the initiation phase of the coagulation cascade.This research was supported by a co-financed action by the European Union through the operational program of the European Regional Development Fund (FEDER) of the Valencian Community 2014-2020, the Generalitat Valenciana through the PROMETEO project AVANTI/2019/123 and by Universitat Politecnica de Valencia through grants PAID-01-17 and the project OCUSENSOR.Martinez-Perez, P.; Gómez-Gómez, MI.; Ivanova-Angelova, T.; Griol Barres, A.; Hurtado Montañés, J.; Bellieres, LC.; García-Rupérez, J. (2020). Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor. Micromachines. 11(5):1-12. https://doi.org/10.3390/mi11050464S112115CRAWLEY, J. T. B., ZANARDELLI, S., CHION, C. K. N. K., & LANE, D. A. (2007). The central role of thrombin in hemostasis. Journal of Thrombosis and Haemostasis, 5, 95-101. doi:10.1111/j.1538-7836.2007.02500.xMann, K. G., Brummel, K., & Butenas, S. (2003). What is all that thrombin for? Journal of Thrombosis and Haemostasis, 1(7), 1504-1514. doi:10.1046/j.1538-7836.2003.00298.xWolberg, A. S., & Campbell, R. A. (2008). Thrombin generation, fibrin clot formation and hemostasis. Transfusion and Apheresis Science, 38(1), 15-23. doi:10.1016/j.transci.2007.12.005Brummel, K. E., Paradis, S. G., Butenas, S., & Mann, K. G. (2002). Thrombin functions during tissue factor–induced blood coagulation. Blood, 100(1), 148-152. doi:10.1182/blood.v100.1.148Hockin, M. F., Jones, K. C., Everse, S. J., & Mann, K. G. (2002). A Model for the Stoichiometric Regulation of Blood Coagulation. Journal of Biological Chemistry, 277(21), 18322-18333. doi:10.1074/jbc.m201173200Danforth, C. M., Orfeo, T., Everse, S. J., Mann, K. G., & Brummel-Ziedins, K. E. (2012). Defining the Boundaries of Normal Thrombin Generation: Investigations into Hemostasis. PLoS ONE, 7(2), e30385. doi:10.1371/journal.pone.0030385Ten Cate, H., & Hemker, H. C. (2016). Thrombin Generation and Atherothrombosis: What Does the Evidence Indicate? Journal of the American Heart Association, 5(8). doi:10.1161/jaha.116.003553Tripathy, D., Sanchez, A., Yin, X., Luo, J., Martinez, J., & Grammas, P. (2013). Thrombin, a mediator of cerebrovascular inflammation in AD and hypoxia. Frontiers in Aging Neuroscience, 5. doi:10.3389/fnagi.2013.00019Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2016). Thrombin—unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer and Metastasis Reviews, 35(2), 213-233. doi:10.1007/s10555-016-9626-0Remiker, A. S., & Palumbo, J. S. (2018). Mechanisms coupling thrombin to metastasis and tumorigenesis. Thrombosis Research, 164, S29-S33. doi:10.1016/j.thromres.2017.12.020Duarte, R. C. F., Ferreira, C. N., Rios, D. R. A., Reis, H. J. dos, & Carvalho, M. das G. (2017). Thrombin generation assays for global evaluation of the hemostatic system: perspectives and limitations. Revista Brasileira de Hematologia e Hemoterapia, 39(3), 259-265. doi:10.1016/j.bjhh.2017.03.009Kintigh, J., Monagle, P., & Ignjatovic, V. (2017). A review of commercially available thrombin generation assays. Research and Practice in Thrombosis and Haemostasis, 2(1), 42-48. doi:10.1002/rth2.12048Mohammadi Aria, M., Erten, A., & Yalcin, O. (2019). Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00395Deng, B., Lin, Y., Wang, C., Li, F., Wang, Z., Zhang, H., … Le, X. C. (2014). Aptamer binding assays for proteins: The thrombin example—A review. Analytica Chimica Acta, 837, 1-15. doi:10.1016/j.aca.2014.04.055Adachi, & Nakamura. (2019). Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules, 24(23), 4229. doi:10.3390/molecules24234229Zhang, Y., Lai, B., & Juhas, M. (2019). Recent Advances in Aptamer Discovery and Applications. Molecules, 24(5), 941. doi:10.3390/molecules24050941Hong, P., Li, W., & Li, J. (2012). Applications of Aptasensors in Clinical Diagnostics. Sensors, 12(2), 1181-1193. doi:10.3390/s120201181Nguyen, P.-L., Sekhon, S. S., Ahn, J.-Y., Ko, J. H., Lee, L., Cho, S.-J., … Kim, Y.-H. (2017). Aptasensor for environmental monitoring. Toxicology and Environmental Health Sciences, 9(2), 89-101. doi:10.1007/s13530-017-0308-2Pohanka, M. (2019). Current Trends in the Biosensors for Biological Warfare Agents Assay. Materials, 12(14), 2303. doi:10.3390/ma12142303Karimi, F., & Dabbagh, S. (2019). Gel green fluorescence ssDNA aptasensor based on carbon nanotubes for detection of anthrax protective antigen. International Journal of Biological Macromolecules, 140, 842-850. doi:10.1016/j.ijbiomac.2019.08.219Damborský, P., Švitel, J., & Katrlík, J. (2016). Optical biosensors. Essays in Biochemistry, 60(1), 91-100. doi:10.1042/ebc20150010Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express, 9(4), 1717. doi:10.1364/boe.9.001717Russo Krauss, I., Merlino, A., Giancola, C., Randazzo, A., Mazzarella, L., & Sica, F. (2011). Thrombin–aptamer recognition: a revealed ambiguity. Nucleic Acids Research, 39(17), 7858-7867. doi:10.1093/nar/gkr522Ponce, A. T., & Hong, K. L. (2019). A Mini-Review: Clinical Development and Potential of Aptamers for Thrombotic Events Treatment and Monitoring. Biomedicines, 7(3), 55. doi:10.3390/biomedicines7030055Chen, X., Li, T., Tu, X., & Luo, L. (2018). Label-free fluorescent aptasensor for thrombin detection based on exonuclease I assisted target recycling and SYBR Green I aided signal amplification. Sensors and Actuators B: Chemical, 265, 98-103. doi:10.1016/j.snb.2018.02.099Cho, H., Baker, B. R., Wachsmann-Hogiu, S., Pagba, C. V., Laurence, T. A., Lane, S. M., … Tok, J. B.-H. (2008). Aptamer-Based SERRS Sensor for Thrombin Detection. Nano Letters, 8(12), 4386-4390. doi:10.1021/nl802245wRuiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. Journal of Biophotonics, 11(10), e201800030. doi:10.1002/jbio.201800030Oliverio, M., Perotto, S., Messina, G. C., Lovato, L., & De Angelis, F. (2017). Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs. ACS Applied Materials & Interfaces, 9(35), 29394-29411. doi:10.1021/acsami.7b01583Schuck, P., & Zhao, H. (2010). The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing. Surface Plasmon Resonance, 15-54. doi:10.1007/978-1-60761-670-2_2Manfrinato, V. R., Zhang, L., Su, D., Duan, H., Hobbs, R. G., Stach, E. A., & Berggren, K. K. (2013). Resolution Limits of Electron-Beam Lithography toward the Atomic Scale. Nano Letters, 13(4), 1555-1558. doi:10.1021/nl304715pPetrova, I., Konopsky, V., Nabiev, I., & Sukhanova, A. (2019). Label-Free Flow Multiplex Biosensing via Photonic Crystal Surface Mode Detection. Scientific Reports, 9(1). doi:10.1038/s41598-019-45166-3Düzgün, A., Maroto, A., Mairal, T., O’Sullivan, C., & Rius, F. X. (2010). Solid-contact potentiometric aptasensor based on aptamer functionalized carbon nanotubes for the direct determination of proteins. The Analyst, 135(5), 1037. doi:10.1039/b926958dBekmurzayeva, A., Dukenbayev, K., Shaimerdenova, M., Bekniyazov, I., Ayupova, T., Sypabekova, M., … Tosi, D. (2018). Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin. Sensors, 18(12), 4298. doi:10.3390/s18124298Coelho, L., Marques Martins de Almeida, J. M., Santos, J. L., da Silva Jorge, P. A., Martins, M. C. L., Viegas, D., & Queirós, R. B. (2016). Aptamer-based fiber sensor for thrombin detection. Journal of Biomedical Optics, 21(8), 087005. doi:10.1117/1.jbo.21.8.08700

    Bimodal waveguide sensors enabled by subwavelength grating structures

    Full text link
    © 2020 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.[EN] A subwavelength grating sensor based on a bimodal waveguide configuration is presented for continuous in-flow measurements of refractive index variations. An experimental bulk sensitivity of 1350nm/RIU and a limit of detection of 2x10-5RIU is obtained in a single-channel refractive index sensor.Torrijos-Morán, L.; García-Rupérez, J.; Griol Barres, A. (2020). Bimodal waveguide sensors enabled by subwavelength grating structures. OSA (Optical Society). 1-2. https://doi.org/10.1364/IPRSN.2020.ITu4AS1

    Sorting linearly polarized photons with a single scatterer

    Full text link
    This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.39.001394. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under lawIntuitively, light impinging on a spatially mirror-symmetric object will be scattered equally into mirror-symmetric directions. This intuition can fail at the nanoscale if the polarization of the incoming light is properly tailored, as long as mirror symmetry is broken in the axes perpendicular to both the incident wave vector and the remaining mirror-symmetric direction. The unidirectional excitation of plasmonic modes using circularly polarized light has been recently demonstrated. Here, we generalize this concept and show that linearly polarized photons impinging on a single spatially symmetric scatterer created in a silicon waveguide are guided into a certain direction of the waveguide depending exclusively on their polarization angle and the structure asymmetry. Our work broadens the scope of polarization-induced directionality beyond plasmonics, with applications in polarization (de)multiplexing, unidirectional coupling, directional switching, radiation polarization control, and polarization-encoded quantum information processing in photonic integrated circuitsThis work has received financial support from the Spanish government (contracts Consolider EMET CSD2008-00066 and TEC2011-28664-C02-02) and GV (grant ACOMP/2013/013). F. J. R.-F. acknowledges support from grant FPI of GV. D. Puerto acknowledges support from grant Juan de la Cierva (JCI-2010-07479).Rodríguez Fortuño, FJ.; Puerto Garcia, D.; Griol Barres, A.; Bellieres, LC.; Martí Sendra, J.; Martínez Abietar, AJ. (2014). Sorting linearly polarized photons with a single scatterer. Optics Letters. 39(6):1394-1397. https://doi.org/10.1364/OL.39.001394S13941397396Winzer, P. J., Gnauck, A. H., Doerr, C. R., Magarini, M., & Buhl, L. L. (2010). Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM. Journal of Lightwave Technology, 28(4), 547-556. doi:10.1109/jlt.2009.2031922Crespi, A., Ramponi, R., Osellame, R., Sansoni, L., Bongioanni, I., Sciarrino, F., … Mataloni, P. (2011). Integrated photonic quantum gates for polarization qubits. Nature Communications, 2(1). doi:10.1038/ncomms1570Tuchscherer, P., Rewitz, C., Voronine, D. V., Javier García de Abajo, F., Pfeiffer, W., & Brixner, T. (2009). Analytic coherent control of plasmon propagation in nanostructures. Optics Express, 17(16), 14235. doi:10.1364/oe.17.014235Sukharev, M., & Seideman, T. (2006). Phase and Polarization Control as a Route to Plasmonic Nanodevices. Nano Letters, 6(4), 715-719. doi:10.1021/nl0524896Stockman, M. I., Faleev, S. V., & Bergman, D. J. (2002). Coherent Control of Femtosecond Energy Localization in Nanosystems. Physical Review Letters, 88(6). doi:10.1103/physrevlett.88.067402Aeschlimann, M., Bauer, M., Bayer, D., Brixner, T., García de Abajo, F. J., Pfeiffer, W., … Steeb, F. (2007). Adaptive subwavelength control of nano-optical fields. Nature, 446(7133), 301-304. doi:10.1038/nature05595Aeschlimann, M., Bauer, M., Bayer, D., Brixner, T., Cunovic, S., Fischer, A., … Voronine, D. V. (2012). Optimal open-loop near-field control of plasmonic nanostructures. New Journal of Physics, 14(3), 033030. doi:10.1088/1367-2630/14/3/033030Rodriguez-Fortuno, F. J., Marino, G., Ginzburg, P., O’Connor, D., Martinez, A., Wurtz, G. A., & Zayats, A. V. (2013). Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science, 340(6130), 328-330. doi:10.1126/science.1233739Lin, J., Mueller, J. P. B., Wang, Q., Yuan, G., Antoniou, N., Yuan, X.-C., & Capasso, F. (2013). Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons. Science, 340(6130), 331-334. doi:10.1126/science.1233746Shitrit, N., Yulevich, I., Maguid, E., Ozeri, D., Veksler, D., Kleiner, V., & Hasman, E. (2013). Spin-Optical Metamaterial Route to Spin-Controlled Photonics. Science, 340(6133), 724-726. doi:10.1126/science.1234892Lee, S.-Y., Lee, I.-M., Park, J., Oh, S., Lee, W., Kim, K.-Y., & Lee, B. (2012). Role of Magnetic Induction Currents in Nanoslit Excitation of Surface Plasmon Polaritons. Physical Review Letters, 108(21). doi:10.1103/physrevlett.108.213907Huang, L., Chen, X., Bai, B., Tan, Q., Jin, G., Zentgraf, T., & Zhang, S. (2013). Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Science & Applications, 2(3), e70-e70. doi:10.1038/lsa.2013.26Tsema, B. B., Tsema, Y. B., Shcherbakov, M. R., Lin, Y.-H., Liu, D.-R., Klimov, V. V., … Tsai, D. P. (2012). Handedness-sensitive emission of surface plasmon polaritons by elliptical nanohole ensembles. Optics Express, 20(10), 10538. doi:10.1364/oe.20.010538Yao, X. S., Yan, L.-S., Zhang, B., Willner, A. E., & Jiang, J. (2007). All-optic scheme for automatic polarization division demultiplexing. Optics Express, 15(12), 7407. doi:10.1364/oe.15.007407Taillaert, D., Harold Chong, Borel, P. I., Frandsen, L. H., De La Rue, R. M., & Baets, R. (2003). A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photonics Technology Letters, 15(9), 1249-1251. doi:10.1109/lpt.2003.816671Taillaert, D., Bogaerts, W., Bienstman, P., Krauss, T. F., Van Daele, P., Moerman, I., … Baets, R. (2002). An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE Journal of Quantum Electronics, 38(7), 949-955. doi:10.1109/jqe.2002.1017613Bogaerts, W., Taillaert, D., Dumon, P., Van Thourhout, D., Baets, R., & Pluk, E. (2007). A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Optics Express, 15(4), 1567. doi:10.1364/oe.15.00156

    Experimental study of the sensitivity of a porous silicon ring resonator sensor using continuous in-flow measurements

    Get PDF
    "© 2017 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited"[EN] A highly sensitive photonic sensor based on a porous silicon ring resonator was developed and experimentally characterized. The photonic sensing structure was fabricated by exploiting a porous silicon double layer, where the top layer of a low porosity was used to form photonic elements by e-beam lithography and the bottom layer of a high porosity was used to confine light in the vertical direction. The sensing performance of the ring resonator sensor based on porous silicon was compared for the different resonances within the analyzed wavelength range both for transverse-electric and transverse-magnetic polarizations. We determined that a sensitivity up to 439 nm/RIU for low refractive index changes can be achieved depending on the optical field distribution given by each resonance/polarization. (C) 2017 Optical Society of America under the terms of the OSA Open Access Publishing AgreementEuropean Commission through the project H2020-644242 SAPHELY; Spanish government through the projects TEC2013-49987-EXP BIOGATE and TEC2015-63838-C3-1-R-OPTONANOSENS; Generalitat Valenciana through the Doctoral Scholarship GRISOLIAP/2014/109.Caroselli, R.; Ponce-Alcántara, S.; Prats-Quílez, F.; Martín-Sánchez, D.; Torrijos-Morán, L.; Griol Barres, A.; Bellieres, LC.... (2017). Experimental study of the sensitivity of a porous silicon ring resonator sensor using continuous in-flow measurements. Optics Express. 25(25):31651-31659. https://doi.org/10.1364/OE.25.031651S31651316592525Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025Xu, D. X., Densmore, A., Delâge, A., Waldron, P., McKinnon, R., Janz, S., … Schmid, J. H. (2008). Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding. Optics Express, 16(19), 15137. doi:10.1364/oe.16.015137Luchansky, M. S., & Bailey, R. C. (2011). High-Q Optical Sensors for Chemical and Biological Analysis. Analytical Chemistry, 84(2), 793-821. doi:10.1021/ac2029024De Vos, K., Bartolozzi, I., Schacht, E., Bienstman, P., & Baets, R. (2007). Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Optics Express, 15(12), 7610. doi:10.1364/oe.15.007610Washburn, A. L., Gunn, L. C., & Bailey, R. C. (2009). Label-Free Quantitation of a Cancer Biomarker in Complex Media Using Silicon Photonic Microring Resonators. Analytical Chemistry, 81(22), 9499-9506. doi:10.1021/ac902006pIqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., … Gunn, L. C. (2010). Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 16(3), 654-661. doi:10.1109/jstqe.2009.2032510Claes, T., Molera, J. G., De Vos, K., Schacht, E., Baets, R., & Bienstman, P. (2009). Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator. IEEE Photonics Journal, 1(3), 197-204. doi:10.1109/jphot.2009.2031596Fard, S. T., Donzella, V., Schmidt, S. A., Flueckiger, J., Grist, S. M., Talebi Fard, P., … Chrostowski, L. (2014). Performance of ultra-thin SOI-based resonators for sensing applications. Optics Express, 22(12), 14166. doi:10.1364/oe.22.014166Flueckiger, J., Schmidt, S., Donzella, V., Sherwali, A., Ratner, D. M., Chrostowski, L., & Cheung, K. C. (2016). Sub-wavelength grating for enhanced ring resonator biosensor. Optics Express, 24(14), 15672. doi:10.1364/oe.24.015672YAKOVTSEVA, V., BONDARENKO, V., BALUCANI, M., KAZUCHITS, N., & FERRARI, A. (1999). INTEGRATED OPTICAL WAVEGUIDES BASED ON POROUS SILICON: STATE-OF-THE-ART AND OUTLOOK FOR PROGRESS. Physics, Chemistry and Application of Nanostructures. doi:10.1142/9789812817990_0077Dhanekar, S., & Jain, S. (2013). Porous silicon biosensor: Current status. Biosensors and Bioelectronics, 41, 54-64. doi:10.1016/j.bios.2012.09.045Snow, P. A., Squire, E. K., Russell, P. S. J., & Canham, L. T. (1999). Vapor sensing using the optical properties of porous silicon Bragg mirrors. Journal of Applied Physics, 86(4), 1781-1784. doi:10.1063/1.370968Baratto, C., Faglia, G., Comini, E., Sberveglieri, G., Taroni, A., La Ferrara, V., … Di Francia, G. (2001). A novel porous silicon sensor for detection of sub-ppm NO2 concentrations. Sensors and Actuators B: Chemical, 77(1-2), 62-66. doi:10.1016/s0925-4005(01)00673-6Stefano, L. D., Rotiroti, L., Rea, I., Moretti, L., Francia, G. D., Massera, E., … Rendina, I. (2006). Porous silicon-based optical biochips. Journal of Optics A: Pure and Applied Optics, 8(7), S540-S544. doi:10.1088/1464-4258/8/7/s37Zhang, H., Jia, Z., Lv, X., Zhou, J., Chen, L., Liu, R., & Ma, J. (2013). Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection. Biosensors and Bioelectronics, 44, 89-94. doi:10.1016/j.bios.2013.01.012Kim, K., & Murphy, T. E. (2013). Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing. Optics Express, 21(17), 19488. doi:10.1364/oe.21.019488Rodriguez, G. A., Hu, S., & Weiss, S. M. (2015). Porous silicon ring resonator for compact, high sensitivity biosensing applications. Optics Express, 23(6), 7111. doi:10.1364/oe.23.007111Harraz, F. A. (2014). Porous silicon chemical sensors and biosensors: A review. Sensors and Actuators B: Chemical, 202, 897-912. doi:10.1016/j.snb.2014.06.048Bisi, O., Ossicini, S., & Pavesi, L. (2000). Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surface Science Reports, 38(1-3), 1-126. doi:10.1016/s0167-5729(99)00012-6Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der Physik, 416(7), 636-664. doi:10.1002/andp.19354160705BALILI, R. B. (2012). TRANSFER MATRIX METHOD IN NANOPHOTONICS. International Journal of Modern Physics: Conference Series, 17, 159-168. doi:10.1142/s2010194512008057Pavesi, L. (1997). Porous silicon dielectric multilayers and microcavities. La Rivista del Nuovo Cimento, 20(10), 1-76. doi:10.1007/bf0287737

    On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices

    Full text link
    [EN] Photonic integrated circuits are developing as key enabling components for high-performance computing and advanced network-on-chip, as well as other emerging technologies such as lab-on-chip sensors, with relevant applications in areas from medicine and biotechnology to aerospace. These demanding applications will require novel features, such as dynamically reconfigurable light pathways, obtained by properly harnessing on-chip optical radiation. In this paper, we introduce a broadband, high-directivity (>150), low-loss, and reconfigurable silicon photonics nanoantenna that fully enables on-chip radiation control. We propose the use of these nanoantennas as versatile building blocks to develop wireless (unguided) silicon photonic devices, which considerably enhance the range of achievable integrated photonic functionalities. As examples of applications, we demonstrate 160 Gbit·s-1 data transmission over mm-scale wireless interconnects, a compact low-crosstalk 12-port crossing, and electrically reconfigurable pathways via optical beam steering. Moreover, the realization of a flow micro-cytometer for particle characterization demonstrates the smart system integration potential of our approach as lab-on-chip devices.Funding from grant TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) is acknowledged. This work was also supported by project TEC2015-73581-JIN (AEI/FEDER, UE), the EU-funded projects FP7-ICT PHOXTROT (No.318240) and H2020-, the EU-funded H2020-FET-HPC EXANEST (No.671553) and the Generalitat Valenciana's PROMETEO grant NANOMET PLUS (PROMETEO II/2014/34) CG-M acknowledges support from Generalitat Valenciana’s VALi+d postdoctoral program (exp. APOSTD/ 2014/044). We thank David Zurita for his help in the design of the data acquisition code for the sensing application.García Meca, C.; Lechago-Buendia, S.; Brimont, ACJ.; Griol Barres, A.; Mas Gómez, SM.; Sánchez Diana, LD.; Bellieres, LC.... (2017). On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications. 6:e17053-e17053. https://doi.org/10.1038/lsa.2017.53e17053e170536Kirchain R, Kimerling R . A roadmap for nanophotonics. Nat Photonics 2007; 1: 303–305.Fan XD, White IM . Optofluidic microsystems for chemical and biological analysis. Nat Photonics 2011; 5: 591–597.Zhuang LM, Roeloffzen CGH, Meijerink A, Burla M, Marpaung DAI et al. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part II: experimental prototype. J Lightw Technol 2010; 28: 19–31.Yu NF, Capasso F . Flat optics with designer metasurfaces. Nat Mater 2014; 13: 139–150.Condrat C, Kalla P, Blair S . Crossing-aware channel routing for integrated optics. IEEE Trans Comput-Aided Design Integr Circuits Syst 2014; 33: 814–825.Lee BG, Rylyakov AV, Green WMJ, Assefa S, Baks CW et al. Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits. J Lightw Technol 2014; 32: 743–751.Robinson JP, Roederer M . Flow cytometry strikes gold. Science 2015; 350: 739–740.Mao XL, Nawaz AA, Lin SC, Lapsley MI, Zhao YH et al. An integrated, multiparametric flow cytometry chip using 'microfluidic drifting' based three-dimensional hydrodynamic focusing. Biomicrofluidics 2012; 6: 024113.Schurr JM . Dynamic light scattering of biopolymers and biocolloids. CRC Crit Rev Biochem 1977; 4: 371–431.Padgett M, Bowman R . Tweezers with a twist. Nat Photonics 2011; 5: 343–348.Haurylau M, Chen GQ, Chen H, Zhang JD, Nelson NA et al. On-chip optical interconnect roadmap: challenges and critical directions. IEEE J Select Top Quantum Electron 2006; 12: 1699–1705.Chan JN, Hendry G, Biberman A, Bergman K . Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis. J Lightw Technol 2010; 28: 1305–1315.Vlasov Y, Green WMJ, Xia FN . High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photonics 2008; 2: 242–246.Novotny L, van Hulst N . Antennas for light. Nat Photonics 2011; 5: 83–90.Fischer H, Martin OJF . Engineering the optical response of plasmonic nanoantennas. Opt Express 2008; 16: 9144–9154.Dregely D, Taubert R, Dorfmüller J, Vogelgesang R, Kern K et al. 3D optical Yagi-Uda nanoantenna array. Nat Commun 2011; 2: 267.Ni XJ, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM . Broadband light bending with plasmonic nanoantennas. Science 2012; 335: 427.Koenderink AF, Alù A, Polman A . Nanophotonics: shrinking light-based technology. Science 2015; 348: 516–521.Polman A . Plasmonics applied. Science 2008; 322: 868–869.Brongersma ML, Shalaev VM . The case for plasmonics. Science 2010; 328: 440–441.Alù A, Engheta N . Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys Rev Lett 2010; 104: 213902.Solís DM, Taboada JM, Obelleiro F, Landesa L . Optimization of an optical wireless nanolink using directive nanoantennas. Opt Express 2013; 21: 2369–2377.Dregely D, Lindfors K, Lippitz M, Engheta N, Totzeck M et al. Imaging and steering an optical wireless nanoantenna link. Nat Commun 2014; 5: 4354.Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 2010; 329: 930–933.Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR . Large-scale nanophotonic phased array. Nature 2013; 493: 195–199.Van Acoleyen K, Bogarets W, Jágerská J, Le Thomas N, Houdré R et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt Lett 2009; 34: 1477–1479.Van Acoleyen K, Rogier H, Baets R . Two-dimensional optical phased array antenna on silicon-on-insulator. Opt Express 2010; 23: 13655–13660.Rodríguez-Fortuño FJ, Puerto D, Griol A, Bellieres L, Martí J et al. Sorting linearly polarized photons with a single scatterer. Opt Lett 2014; 39: 1394–1397.Krasnok AE, Miroshnichenko AE, Belov PA, Kivshar YS . All-dielectric optical nanoantennas. Opt Express 2012; 20: 20599–20604.Filonov DS, Krasnok AE, Slobozhanyuk AP, Kapitanova PV, Nenasheva EA et al. Experimental verification of the concept of all-dielectric nanoantennas. Appl Phys Lett 2012; 100: 201113.Cárdenas J, Poitras CB, Robinson JT, Preston K, Chen L et al. Low loss etchless silicon photonic waveguides. Opt Express 2009; 17: 4752–4757.Balanis CA . Antenna Theory: Analysis and Design. Wiley: New York; 1982.Kosako T, Kadoya Y, Hofmann HF . Directional control of light by a nano-optical Yagi-Uda antenna. Nat Photonics 2010; 4: 312–315.Subbaraman H, Xu XC, Hosseini A, Zhang XY, Zhang Y et al. Recent advances in silicon-based passive and active optical interconnects. Opt Express 2015; 23: 2487–2511.Della Corte FG, Esposito Montefusco M, Moretti L, Rendina I, Cocorullo G . Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models. J Appl Phys 2000; 88: 7115–7119.Chu T, Yamada H, Ishida S, Arakawa Y . Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides. Opt Express 2005; 13: 10109–10114.Wang WJ, Zhao Y, Zhou HF, Hao YL, Yang JY et al. CMOS-compatible 1 × 3 silicon electrooptic switch with low crosstalk. IEEE Photon Technol Lett 2011; 23: 751–753.Cui KY, Zhao Q, Feng X, Liu F, Huang YD et al Ultra-compact and broadband 1 × 4 thermo-optic switch based on W2 photonic crystal waveguides. Proceedings of 2005 Opto-Electronics and Communications Conference; 28 June–2 July 2015; Shanghai, IEEE: Shanghai 2015.Lee BG, Dupuis N, Pepeljugoski P, Schares L, Budd R et al. Silicon photonic switch fabrics in computer communications systems. J Lightw Technol 2015; 33: 768–777.Song WW, Gatdula R, Abbaslou S, Lu M, Stein A et al. High-density waveguide superlattices with low crosstalk. Nat Commun 2015; 6: 7027.Melati D, Morichetti F, Gentili GG, Melloni A . Optical radiative crosstalk in integrated photonic waveguides. Opt Lett 2014; 39: 3982–3985.Zhang YS, Watts BR, Guo TY, Zhang ZY, Xu CQ et al. Optofluidic device based microflow cytometers for particle/cell detection: a review. Micromachines 2016; 7: 70.Kotz KT, Petrofsky AC, Haghgooie R, Granier R, Toner M et al. Inertial focusing cytometer with integrated optics for particle characterization. Technology (Singap World Sci) 2013; 1: 27–36.Hunt HC, Wilkinson JS . Multimode interference devices for focusing in microfluidic channels. Opt Lett 2011; 36: 3067–3069
    corecore